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Abstract--This paper considers the behaviour of a vapour bubble formed at a nucleation site on a heated 
horizontal wall. This bubble is modeled as a spherical segment which is separated from the wall by a 
microlayer of intervening liquid. The liquid is presumed to be at rest at great distances from the bubble. In 
order to avoid unwarranted assumptions about forces acting on the bubble which are specific to all known 
models of bubble growth and detachment, we derive equations that govern bubble behaviour in a rigorous 
way from the variational equation that describes mechanical energy conservation for the whole system, 
which includes both the bubble and the liquid. The variational equation leads to a set of two mutually 
independent strongly nonlinear equations which govern bubble expansion and the motion of its centre 
of mass. Because these equations contain an extra unknown variable (the bubble vapour pressure), a 
supplementary equation that defines bubble vapour temperature must be formulated with allowance made 
for heat transfer to the bubble both from the bulk of the surrounding liquid and through the microlayer. 
The most important conclusion of this paper consists in the fact that surface tension effects result in an 
effective force that tends to transform the bubble into a sphere, thereby facilitating bubble detachment. 
This conclusion absolutely nullifies the generally, however erroneously, held belief that this effective force 
presses the bubble to the wall. By way of example, we consider the evolution of bubbles whose growth is 
thermally controlled. Our analysis provides quite a natural explanation for a number of repeatedly observed 
phenomena, such as the influence of gravity and surface tension on bubble growth rate and the dependence 

of bubble detachment size on thermophysical parameters. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Nucleate pool and forced convection boiling are two 
techniques that are important for the cooling of hot 
surfaces because relatively small temperature differ- 
ences result in high heat transfer rates. These tech- 
niques can not be effectively applied to diverse indus- 
trial and technological problems that require removal 
of large amounts of generated heat due to a con- 
siderable lack of knowledge with respect to the under- 
lying fundamental mechanisms that govern heat trans- 
fer properties during boiling processes. 

It is clear to any knowledgeable expert in the field 
that key properties of boiling heat transfer are dictated 
by the characteristics of vapour bubbles that depart 
from a superheated surface. In order to determine 
bubble detachment characteristics, a formidable ther- 
mohydrodynamic problem must be solved. On the one 
hand, vapour bubble evolution involves complicated 
liquid and vapour flow against an unknown interface, 
that is, against unknown bubble shape which can be 
found only in the course of solving the problem. On 
the other hand, this flow is greatly influenced by (1) 
the rate of heat transfer in the bulk of liquid near 
the bubble, (2) the rate of heat transfer through the 
microlayer separating the bubble from the surface and 
(3) the rate of vaporization at the interface. Heat 
transfer is, in its turn, strongly affected by conditions 
and properties of the flow. This nonlinear feedback 
between hydrodynamic and thermal phenomena 

makes the resulting problem practically intractable 
without drastic model simplifications. 

Admittedly, and for this reason, theoretical works 
on vapour bubble dynamics the present authors are 
aware of employ more or less plausible postulates 
concerning forces that act on a bubble as it evolves 
while attached to a superheated surface and which 
eventually detaches itself from this surface. It will later 
be clear that all such postulates are intrinsically wrong 
with respect to the expected form of the force due to 
surface tension effects. Quite naturally, mistakes made 
while studying vapour bubble evolution and while 
determining both bubble growth rate and bubble 
detachment size have far-reaching consequences. 
These mistakes negatively affect conclusions about 
heat transfer in nucleate boiling in general, and in 
particular, they cause certain inaccuracies in resultant 
formulae for heat removal rates. 

With a mind to saving journal space, and under the 
presumption that our reader is adequately acquainted 
with the appropriate literature, we are not com- 
menting on the accessible information about vapour 
bubble evolution in detail. But we feel that we must 
spend some time on the main deficiencies specific to 
available formulae describing the two most important 
bubble characteristics: (1) bubble growth rate, and 
(2) bubble detachment size. There is extensive litera- 
ture on both these characteristics that is reviewed in a 
great many papers, manuals and textbooks. As 
regards bubble growth rate, the state of the art has 
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NOMENCLATURE 

A coefficients defined in equation (2) 
a 16/11 
C bubble growth constant 
E~, E2 constituents of kinetic energy 
g gravity acceleration 
h, H microlayer thickness and 

corresponding coefficient, equation 
(20) 

K, k coefficients introduced when defining 
kinetic energy 

L latent heat of evaporation 
L,, L~ length and time scales 
Xg b'/#~ 
Nb, Nm, N~ dimensionless criteria, equations 

(31), (24) and (36), respectively 
p pressure 
R bubble radius 
S total area of bubble surface 
s coordinate of centre of curvature 
T temperature 
Uc, Ug, U~ constituents of potential energy 
u averaged liquid velocity in microlayer 
V bubble volume 
w velocity 
z coordinate of bubble centre of mass. 

normal coordinate in microlayer 
Ja, Pr Jakob and Prandtl criteria, 

respectively. 

Greek symbols 
~, fl variables introduced in equations (19) 
y parameter introduced in equation (13) 
A T  T,~-T~ 
~, ~ dimensionless coordinate of centre of 

curvature and bubble radius 
q dimensionless normal coordinate in 

microlayer 
() angle determining spherical segment 

shape, Fig. 1 (a) 
t, pv/ pl 
2 liquid heat conductivity 
v, ve liquid kinematic viscosity and effective 

v defined in equation (20) 
p density 
cr surface tension coefficient 

dimensionless time 
X liquid thermal diffusivity. 

Subscripts 
d detachment 
e Earth conditions 
1 liquid 
s saturation 
v vapour 
w wall 
-s. far from bubble. 

not changed much from 1970 when paper [1] was 
published. No matter whether bubble growth is ther- 
mally or inertially controlled, the resultant formulae 
do not involve the parameters that determine both the 
buoyancy and surface tension force that are experi- 
enced by the growing bubble. (For instance, the well- 
known parabolic law for thermally controlled bubble 
growth contains only the Jakob number and liquid 
thermal diffusivity value.) However, bubble growth 
rate has been proven more than once to depend on 
gravity acceleration [2-5]. There are numerous indi- 
cations (partially reviewed in ref. [6]) that bubble 
growth rate is dependent on the liquid Prandtl number 
and on solid heater material properties. Some works 
show that the parabolic law for bubble diameter is 
frequently invalid, and that the diameter is actually 
proportional to the variable for time raised to a power 
that may be larger as well as smaller than one half [2, 
3, 7]. The dependence of bubble size on Prandtl num- 
ber can in principle be explained by allowing for liquid 
flow around the growing bubble [8]. Similarly, the 
dependence on heater material properties can be 
understood when direct heat transfer to the bubble 
through a liquid microlayer beneath the bubble is 
accounted for [9-12]. There are also possible attempts 
to explain bubble growth rate dependence on the 

liquid-vapour surface tension coefficient based on an 
analysis of microconvective flows that are caused by 
the thermal and concentrational Marangoni effects 
[13, 14]. However, growth rate dependence on gravity 
remains completely incomprehensible. 

Bubble detachment size is commonly determined 
by equating the sum of buoyancy (facilitating bubble 
detachment) and the effective surface tension force 
(that is most mistakenly presumed to hinder bubble 
detachment) to zero. The resultant well-known Fritz 
formula and its various modifications are deficient for 
at least two significant reasons. First, they result from 
applying a static force balance to the essentially 
unsteady phenomenon of bubble growth and detach- 
ment. Second, they give rise to an impossible cor- 
ollary : that there exists an extended area along which 
bubble vapour directly borders on the hot surface even 
at the moment of detachment. 

Basing bubble volume calculations at detachment 
on force balance considerations is also flawed because 
such considerations do not account for the bubble 
volume dependence on the heat transfer charac- 
teristics that is so frequently observed in experiments. 
In particular, bubble departure volume was found in 
refs. [15, 16] to be strongly dependent on a modified 
Jakob number (with AT replaced by Ts), a number 
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known to have nothing in common with the force 
balance. 

A further hindrance to modelling bubble detach- 
ment by means of force balance considerations is the 
mere fact that the surface tension force does not hold 
the bubble to the surface but actually adds to buoy- 
ancy, thus promoting bubble detachment, as will be 
proven later in this paper. Interestingly, having met 
with some discrepancies intrinsic in the notion of that 
the surface tension force presses the bubble to the 
surface, Cochran and Aydelott [17] were bold enough 
to intuitively conclude that there is a net upward 
"pressure force" that is proportional to the surface 
tension coefficient and that this force adds to buoy- 
ancy, thus facilitating bubble detachment. Although 
their fundamental premise with regard to surface ten- 
sion effects seems to be somewhat naive, it happens to 
be basically true that surface tension force combines 
with buoyancy to facilitate bubble detachment. 

The purpose of this paper is to propose a model that 
does not contain arbitrary assumptions with respect to 
the postulated forms of the different forces relevant 
to vapour bubble evolution. This model will for the 
first time yield a set of interconnected dynamic equa- 
tions that describe bubble growth and detachment in 
a thoroughly rigorous way, providing a springboard 
that will enable cogent consideration of more com- 
plicated vapour bubble dynamics and boiling heat 
transfer problems in future research efforts. 

2. THE PHYSICAL MODEL 

In order to avoid unwieldy and tedious calculation 
and to leave the main ideas unencumbered by 
unnecessary details, we shall assume from the start 
that a bubble forming at a nucleation site on an 
upward facing horizontal wall can be approximately 
modeled as a spherical segment with a base parallel to 
the wall, as shown in Fig. 1 (a). The segment is sep- 
arated from the wall by a liquid microlayer whose 
thickness h(t, r) is very small as compared with radius 
R(t) of the upper spherical part of the segment [Fig. 
l(b)]. This means that the bubble base may be 
regarded as almost flat irrespective of possible space 
variations in h(t, r). Only two parameters are needed 
to define the shape and volume of the segment: radius 
R(t) and, say, height s(t) of the centre of the curvature 
of the spherical surface, or perhaps height z(t) of the 
centre of mass of the segment above the wall, or angle 
O(t) shown in Fig. 1 (a). Volume V and total surface 
area S of the segment, and also z and 0 are expressible 
a s  

S = n(R+s)(3R-s)  

n(R 2 - s2 )  2 s 
z = s +  4V sin0 R '  (I) 

Arbitrary variations of all variables determining 

I 

/ / / / / / / / / / I / l l l l l l l / / I / / / / I / / / / / / / /  
i Wall (a) 

Z 

(b) Nucleation site 

Fig. 1. Schematic of vapour bubble (a) and of microlayer (b). 

bubble geometry will be significant to the discussion 
below. We shall express these variations in terms of 
6 V and 6z, and these delta values will be regarded as 
mutually independent. A simple calculation results in 

{fiR, 6s, 60} = {ARv, A~v, Aov} 6V+ {Ar~, A,~, Ao~} 6z 

R - s  
Art~- 2R A~ 

1 R--s  
ARv -- 2nR(R+s) 2R A~v 

{Ao. Aov} x / ( R 2 - s  2) Rx / (R2- s  2) 

1 
A~v= 2 V \ R + s -2-V )A~ 

A~z = [ 1  n ( R + ~ - ~ R - s ) ]  -~ (2) 

The meaning of this assumption is very simple. We 
substitute real bubble that possesses an infinite degree 
of freedom number (say, an infinite number of 
coefficients when representing bubble shape with the 
help of a series in spherical harmonics) and that must 
be described by an infinite number of equations by a 
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segment that possesses only two degrees of freedom, 
and accordingly, that requires only two equations be 
used to solve for V(t) and z(t). The same trick was 
successfully used when describing a liquid droplet 
approaching a hot wall as a disk in ref. [18]. 

The microlayer is initially formed when liquid near 
the wall is left behind as the bubble spreads over 
the wall and expels liquid ahead of itself. Since the 
microlayer is very thin, the characteristic time h~-/v of" 
vorticity diffusion and the characteristic time hL~X of 
temperature diffusion across the microlayer are sup- 
posedly much smaller than the time scale ofmicrolayer 
expansion or reduction along the wall or the timescale 
of bubble growth. For this reason, liquid flow and 
heat transfer inside the microlayer may be treated by 
a quasi-stationary approximation everywhere except 
at outer region II [the region that immediately adjoins 
the bubble rim as the bubble advances or retreats in 
the radial direction, see Fig. 1 (b)]. In other words, the 
fact that the microlayer radial dimension varies as 
the bubble grows has no appreciable effect on the 
establishment of velocity and temperature profiles 
within the main body of the microlayer out of the said 
marginal region. 

For simplicity, evaporation kinetics are assumed 
sufficiently fast so as to justify our neglecting a poss- 
ible dependence of phase transition temperature on 
evaporation rate. Dependence of the phase transition 
temperature on the curvature of the liquid vapour 
interface is ignored as well. (Trivial estimates prove 
these assumptions to almost always hold approxi- 
mately true save for some rather esoteric situations.) 
Given these conditions, temperature may obviously be 
regarded as uniform along the whole of the interface 
where vaporization takes place. We further assume 
that the liquid is devoid of surfactants and other sol- 
utes which might affect the surface tension coefficient. 
This allows us to overlook surface tension gradients 
resulting from varying solute concentrations near the 
interface. Thus, the Marangoni effect is entirely 
excluded from our analysis. 

Finally, temperature dependence for both liquid 
and vapour physical properties is ignored, and wall 
temperature is taken to be invariable. The latter 
assumption is approximately valid if the thermal 
diffusivity of the wall material considerably exceeds 
that of the adjacent liquid, and if wall material thermal 
diffusivity is high enough to rapidly compensate both 
heat absorption due to evaporation and heat removal 
due to natural convection. 

With this range of assumptions in mind. we now 
focus our attention on the evolution of a single vapour 
bubble that grows at an isolated nucleation site. And 
here we make some further assumptions. It is pre- 
sumed that there is no forced convection. The col- 
lective effects usually exhibited in a system of many 
bubbles are ignored. This means that all effects owing 
to hydrodynamic and thermal interaction of bubbles 
near the wall are not at all considered. Likewise, we 
intentionally confine ourselves to treating the dynamic 

properties featured by the bubble as it grows and 
ultimately detaches, without paying attention to the 
possible influence of those properties on boiling heat 
transfer characteristics. Investigation of the relation 
between bubble dynamics and nucleate pool boiling 
heat transfer requires research methods that are dis- 
tinctly different from the ones used in the present 
work. It could constitute a topic of some future paper. 

The way in which a bubble evolves can be imagined 
as follows. Due to liquid vaporization from the bubble 
spherical surface, as well as from the microlayer, the 
bubble monotonously grows. Vaporization leads to 
an increase in R(t), and if angle 0 shown in Fig. 1 (b) 
is constant, vaporization also results in a proportional 
increase in both s(t) and z(t). In cases where 0 is 
constant, the bubble grows without changing its 
shape. The increase of R(t) and z(t) induces, however, 
an opposing force due to the inertia of the accelerated 
liquid. When buoyancy and other forces, if any, that 
favour the bubble rising above the wall are not large, 
the inertial force causes the bubble to flatten. This 
provides an additional reason for broadening of the 
bubble base, and on the whole, s(t)/R(t) has to 
decrease in this event. Consequently, the shape of a 
small bubble, even if the bubble was at first approxi- 
mately spherical, must progressively deviate from that 
of a sphere in an early stage of the bubble's growth. 
But for larger bubble, the forces at play are strong 
enough to make s(t)/R(t) increase, so that bubble 
shape becomes more and more spherical as it grows. 

The bubble base should normally advance along 
the wall in the beginning of bubble formation, for one 
or both of the above indicated reasons. After reaching 
a maximal area, it must recede during some final stage 
of bubble evolution and virtually disappear. The 
moment when the bubble base disappears (and the 
bubble transforms into a full sphere) may be associ- 
ated with bubble detachment. Subsequent findings 
and conclusions corroborate this picture. 

3. VARIATION OF MECHANICAL ENERGY 

A methodological drawback of the conventionally 
employed force balance schemes lies in the fact that 
these forces are evaluated in a haphazard way: they 
have heretofore been determined by integrating 
stresses acting on the bubble surface. Such schemes 
would doubtless be correct if the bubble were a self- 
contained isolated entity entirely independent of the 
surrounding liquid. As the matter stands, however, 
bubble motion is principally inseparable from that of 
the surrounding liquid. This is unequivocally con- 
firmed by the mere fact that forces opposing either 
bubble growth or bubble translational motion are pri- 
marily associated with inertia of the liquid being 
expelled as the bubble expands, or with inertia of the 
virtual liquid mass being carried along as the bubble 
moves. This means that an analysis of momentum 
conservation should be conducted with respect to the 
whole system under study, a system that would include 
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both the bubble and the ambient liquid, rather than a 
system which would take the bubble in isolation. 

The forces that govern bubble behaviour may vary 
as the bubble evolves. Some of these forces affect 
bubble expansion, whereas other ensure its trans- 
lational motion. It is often difficult to distinguish 
between forces that bear upon bubble expansion and 
those which have relevance to bubble translational 
motion for the simple reason that bubble development 
entails substantial changes in bubble shape. For 
instance, the inertia of the liquid displaced by the 
growing bubble either resists or assists expansion, 
depending on the course of bubble development. If 
the bubble centre of mass is positioned at a fixed point 
the bubble expansion is spherically symmetric, there 
are no changes in bubble shape. However, space 
accessible to the bubble is restricted by the solid wall. 
Hence the centre of mass should inevitably shift above 
the wall as the bubble grows, even if bubble shape were 
maintained invariable. Accordingly, liquid expansion 
caused by bubble growth loses its spherical symmetry, 
and the appearance of a corresponding inertial force 
which is due solely to liquid expansion and which 
influences a shift of the bubble centre can readily be 
anticipated. This inertial force contributes to the 
action of the familiar inertial force which itself is due 
to the virtual mass of liquid that is carried along by the 
moving bubble and which resists bubble translational 
motion. 

Surface tension effects at the liquid-vapour inter- 
face also vary as the shape of the interface varies. 
These effects not only oppose bubble growth through 
the action of an extra pressure drop across the curved 
bubble surface, but they must also favour any change 
in bubble shape that leads to a decrease of the total 
bubble surface area at a given bubble volume. Inas- 
much as any such change in bubble shape is 
accompanied by a displacement of the bubble centre 
of mass, as is the case for vapour bubbles in nucleate 
pool boiling, surface tension necessarily brings about 
an additional force that helps to promote this dis- 
placement. 

At present, we have no clear means of distinguishing 
translational forces from expansional ones. To resolve 
this problem, we apparently have to resort to the 
general thermodynamic method, in accordance with 
which we must consider a variation of a suitable 
thermodynamic potential, and this variation must be 
presented as the sum of generalized thermodynamic 
forces multiplied by variations of corresponding 
generalized thermodynamic variables. If this potential 
is invariable during the bubble evolution process, and 
if the thermodynamic variable variations are inde- 
pendent, then all generalized thermodynamic forces 
must turn to zero. In this way, a set of equations that 
govern bubble development can be obtained, the total 
number of these equations being equal to the number 
of thermodynamic forces. 

As has already been pointed out, the system under 
study possesses two degrees of freedom, so we need 

but introduce two independent variables. It is best to 
choose V and z to represent those variables, and to 
suppose that the total mechanical energy of the whole 
system is a relevant thermodynamic potential which 
remains invariable at an arbitrary virtual variation of 
these variables. In order to regard the system's total 
mechanical energy as an invariable quantity, we need 
(1) to neglect viscous dissipation of kinetic energy and 
(2) to'formally set the variation of total vapour mass 
within The bubble to zero during evaluation of mech- 
anical energy variation. Viscous dissipation may be 
safely ignored for reasons indicated later. Vapour 
mass variation must be formally set to zero since evap- 
oration evokes a partial transformation of thermal 
energy into mechanical energy, and the mechanical 
energy of the whole liquid-bubble system would not 
vary during bubble evolution only under the condition 
of this transformation being entirely discarded. 

The mechanical energy of the system consists of two 
kinetic energy and three potential energy components. 
The kinetic energy components are due to" (1) dis- 
placement of the bubble centre of mass in translational 
motion ; this gives way to bubble vapour acceleration 
and acceleration of the additional liquid mass and 
(2) bubble expansion ; this results in a roughly radial 
motion of liquid and vapour. The potential energy 
components involve: (1) system potential energy in 
the gravity field, (2) surface tension energy and (3) 
vapour compression energy within the bubble. 

3.1. Kinetic energy 
Kinetic energy variation associated with bubble 

translational motion can be formulated in a straight- 
forward manner, by its very definition, 

d 6E, =~[(pv+k(O) ~. dz-]~ ~f -p , ) v~ joz  (3) 

where k(O) is a virtual mass coefficient. This coefficient 
equals unity for a sphere moving in an unbounded 
fluid and 11/8 for a sphere touching a solid plate as it 
begins to move normally to the plate [19]. 

If bubble expansion is taken to be spherically 
symmetric, liquid radial velocity equals w~ = 
(R/r)2(dR/dt), and kinetic energy variation of the 
liquid associated with bubble expansion would be 

{I f F/_  2dRl2dV  6E21 =- 6 ~P'L>RL\r] d t J  J 

=4np,R2~R d2R 3{dR'~Z]6 R 
[_ dt 2 + ~ \ ~ - , ]  ] " 

If the bubble is a spherical segment, E2~ can be 
approximated as 

E2~ = (1 - cos O)Kt (O)p~R 3 (dR~dO 2 

with K~(O) being understood as a correction function 
that accounts for the presence of the boundary wall 
parallel to the segment base. If the bubble is a growing 
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sphere touching the wall, then 0 = 7r. 1 - c o s  0 = 2, 
and K~(x) = 14/3 [20], which values have been utilized 
previously by Mikic et al. [1]. For a sphere far away 
from the wall K( r t )=  rt, and we obtain the former 
result for spherically symmetric expansion (which is 
represented within the curly brackets in the preceding 
equation for 6E2~). When the bubble is a radially grow- 
ing hemisphere attached to the wall, and if the viscous 
boundary layer is neglected, then 0 = 7z/2, 
l - c o s 0  = 1, and again K~(~/2)= 7z. After manipu- 
lation, variation of E2~ can be formally designated as 

, F d e R  3 /dR\27 .  
6E21 = 2(I-cosO)Ki(O)pIR-LRd, 2 + ~t~7 ) J6R 

+ d t [ ( l  ~/dR\3 -cosO)Kl(O)]piR [ ~ l )  ?~O. (4) 

While calculating the corresponding kinetic energy 
of bubble vapour, we assume vapour density to be 
uniform throughout the bubble. This forces the con- 
tinuity equation to yield, for a spherically symmetric 
flow, the following expression for the vapour radial 
velocity : w, = (r/R)(dR/dt). The total mass of vapour 
inside the bubble has been formally taken constant 
while dealing with the continuity equation in con- 
formity with the requirement indicated above, that is. 
6(pvV) = 0. Allowing for the restricting wall in the 
same manner  as before, we now get 

E2, = ( 1 / 5 )  (1 - cos O)K, (O)pvR 3 (dRIdt)2 

and, instead of equation (4), 

2 F d2R 3[dR\2] 

< "  = +  kT;) 1 

+ ~ [ ( 1 - c o s 0 ) K , ( 0 ) ] p , R  3 dt 60. (5) 

The desired variation ~ E  2 of kinetic energy attribu- 
table to bubble expansion is obtained by summing 
equations (4) and (5). 

3.2. Potential energy 
If the potential energy of a liquid without any bub- 

bles is taken as zero, then the potential energy of liquid 
and vapour in the gravity field can be represented as 
Ug = - (p~ - p,.) Vgz + const. Hence, again taking as 
invariable the total vapour mass, 

6 Ug = -- (Pl -- Pv ) Vg iJz -- plgz 6 17. (6) 

By definition, the potential energy of surface tension 
equals U~ = aS, whence 

6U~ = adS = 2x~r[(3R+s)aR+(R-s)as].  (7) 

The potential energy assigned to vapour com- 
pression can be most conveniently expressed in terms 
of the virtual work performed by the vapour as the 
bubble grows. This yields 

iJUc = - ~  (pv -p~)  6ndS 

where integration is performed over the whole bubble 
surface, p.,~ is liquid pressure at infinity, and fin is the 
virtual local displacement of the surface. Evidently, 
6n = 6R+(cosO)6s at the spherical portion of the 
bubble boundary,  and 6n = 0 at the bubble base. 
Thus, 

6Uc = -~zRZ(p , -p~ ) [2 ( l - cosO)6R+s in  2 06@ 

(8) 

As a final result, the mechanical energy con- 
servation law yields 

dE, +6E2+aUg+,~U,+aU~ = 0. (9) 

All the terms involved in this fundamental  vari- 
ational equation are specified in equations (3) (8). 
They contain variations 6R, as and 60 which have to 
be expressed through variations 6V and az with the 
aid of equation (2). Since the latter variations can be 
duly regarded as mutually independent, equation (9) 
in fact splits into two dynamic equations governing 
bubble growth and motion of its centre of mass. 

4. DYNAMIC EQUATIONS 

After simple manipulation,  dynamic equations 
describing bubble expansion and translational motion 
can be formulated as follows : 

[ d2R 
2(1 - c o s  O)( K,(O)p, + ~ K, (O)p,) R 2 L R dr' 

3 (dR~ 27 

\ dt ] Aov 

o ' l - 3 R + s  ., . G 

(1o) 

d k(O) dz 

I ,~ d2R 
× (K,(O)p, +~K,(O)p,)R- LR~t 2 + ~t~)3fdR\2GjAR, 

d 
+ d~[(1 - cos O)(K, (O)p, + ~ K, (0)p,)] R 3 l _ . . | 2  

/<IRk 
t d t )  Ao, 

~z(R 2 - - $ 2 ) O  " 

= ( p l - p v ) v v +  R asz. (11) 

The quantities s, z, 0, R and V have been defined in 
Section 2 of this paper. They are related to each other 
by three equations (1). This means that any two of 
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these five quantities may be regarded as independent 
and taken as unknown variables of the above equa- 
tions. 

Equation (10) is the dynamic equation describing 
bubble expansion. Its left-hand side corresponds to 
an effective inertial force that is essentially dependent 
not only on bubble size but also on current bubble 
shape. The first term on the right-hand side represents 
an effective pressure drop that drives bubble expan- 
sion. Allowance for contribution p~qz to this term 
makes more precise the value of liquid pressure that 
should be used when formulating this pressure drop. 
The physical meaning of the gravity correction to p~ 
is quite obvious and requires no further explanation. 
The second term on the right-hand side of equation 
(10) stems from surface tension at the bubble bound- 
ary surface. It is also dependent on bubble shape. 
Note that this term considerably deviates from the 
familiar quantity 2a/R which is characteristic of 
spherical interfaces and which is universally intro- 
duced when attempting to make a correction to the 
pressure drop due to surface tension. However, this 
second term tends to 2a/R as s approaches R, that is, 
as the bubble transforms into an undeformed sphere. 

Equation (11) describes translational motion of the 
deformed bubble. The left-hand side of this equation 
involves two inertial terms of different physical origin. 
The first term comes from vapour acceleration inside 
the bubble and acceleration of the virtual mass of 
liquid. The second term describes inertia of the liquid 
being placed into motion as the bubble grows, and 
inertia of expanding vapour flow. The corresponding 
inertial force is the result of the fact that the spherical 
symmetry of liquid and vapour flow is broken because 
the bubble borders on the solid wall. The last force 
may be conceived, in a sense, as a specific reaction 
force exerted by the wall. 

Only two forces affecting bubble motion appear on 
the right-hand side of equation (11). The first term is 
rather trivial : it represents the buoyancy that is used in 
calculations dealing with vapour and gaseous bubbles. 
The second term is entirely novel. It represents an 
effective surface tension force that until now has not 
been taken into account in a concise manner. This 
surface tension force helps the bubble to attain spheri- 
cal form and so favours the rise of its centre over the 
wall. This means that it adds to the action of buoyancy 
in facilitating bubble detachment. The physical origin 
of the surface tension force is analogous to that of 
the familiar elastic force that occurs when an elastic 
sphere, such as a rubber ball, is pressed against a solid 
plate. Just as the latter force causes the elastic sphere 
to rebound from the plate, the former surface tension 
force causes the bubble to detach. Our derivation of 
such a surface tension force that facilitates bubble 
detachment is contrary to the unfounded pre- 
sumptions and inferences in numerous papers in the 
field which generally suppose surface tension effects 
to originate a net force that keeps the bubble attached 
to the wall and, thus, impedes detachment. 

An approach similar to that presented above has 
proven successful in resolving a difficult problem that 
involves the dynamic and thermal interaction of a 
deformable liquid droplet impinging onto a super- 
heated surface [18]. In this case, analysis of potential 
energy variations exhibited due to surface tension has 
led to the unequivocal conclusion that a surface ten- 
sion force exists, and that this force helps the droplet 
to restore its original spherical shape. This force has 
been shown to play a very significant role when 
explaining the dynamic Leidenfrost phenomenon 
which is so important in the design of manifold spray 
cooling processes. 

It should be emphasized that our fundamental infer- 
ence about surface tension force facilitating bubble 
detachment is entirely independent of all the assump- 
tions made to simplify our analysis. All these assump- 
tions can be avoided at the cost of making calculations 
more complicated and tedious, and none of them 
affects in the least the above derivation of dynamic 
equations from the mechanical energy conservation 
law. In this respect, the inference that the surface 
tension force facilitates bubble detachment is rigor- 
ous, and it is crucial for studies of vapour bubble 
dynamics. Moreover, this inference evidently invali- 
dates principal conclusions pertaining to bubble 
detachment in other known theoretical papers on this 
subject which invariably treat the surface tension force 
as a force pressing the bubble to the wall. Hence 
follows another obvious inference that those priorly 
drawn conclusions must be revised. 

As might well be expected in light of the Curie 
principle of the thermodynamics of irreversible pro- 
cesses, the pressure drop between vapour within the 
bubble and the ambient liquid does not originate a 
force that would bear upon bubble translational 
motion. It is not surprising, therefore, that the cor- 
responding contribution to compression energy vari- 
ation in equation (8) that is proportional to 6z can 
readily be shown to be identically equal to zero. 

For good reasons, equation (11) does not include a 
term to describe any force that might arise from the 
momentum of vapour molecules emerging from the 
bubble boundary as a result of evaporation. The vap- 
our momentum imparted to the bubble ultimately 
comes from the evaporating liquid, and the momen- 
tum conservation equation unambiguously requires it 
to be exactly compensated by a corresponding liquid 
momentum loss. This means that there should be no 
momentum change in the whole system, and conse- 
quently, no ensuing force that would be capable of 
affecting system behaviour. This state of affairs is in 
contrast to those discussed in some papers (for exam- 
ple, see ref. [4]). This situation is drastically different 
from that encountered in processes where bubbles are 
formed as a result of gas being injected into a liquid 
through submerged nozzles or plate orifices. In the 
latter case, some amount of momentum is brought 
into the system from outside, that is, with flow of the 
injected gas, and this momentum inflow results in the 
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occurrence of a force that is precisely equal to the 
total momentum flux, again in compliance with the 
momentum conservation law. 

In our application of the energy conservation law, 
we have purposefully omitted consideration of a drag 
force, and its corresponding viscous dissipation of 
kinetic energy. A drag coefficient could be assigned to 
a bubble if a wake were completely established behind 
the bubble. As the matter stands, there is no "behind" 
for a bubble attached to a wall, and even if there were, 
initial bubble motion would be practically irrotational 
anyway [21]. Consequently, the wake would not be 
fully developed until the bubble had covered an 
appreciable distance, one comparable to its linear size. 
It is not surprising therefore that drag force has been 
generally found to be negligible with respect to the 
evolution of either gaseous bubbles formed in the 
process of gas injection [19], or vapour bubbles in 
nucleate pool boiling [3]. At the same time, viscous 
stresses displayed near a moving liquid-gas or liquid- 
vapour interface may usually be ignored, saving in 
rather special situations. 

It should be pointed out that equations (10) and 
(11) are somewhat devaluated by the fact that too 
little is known about functions k(O), K~(O) and K~(O) 
which appear in these equations. However, these 
equations can be approximately formulated for bub- 
bles whose shape is close either to a hemisphere 
(0 ~ n/2) or to a sphere (0 ~ g). 

5. MICROLAYER 

Equation (11) includes one extra unknown vari- 
able: vapour pressure p~. Using the linearized Cla- 
peyron-Clausius equation, we can reduce this variable 
to bubble vapour temperature Tv, which is unknown 
as welt. Thus a complementary equation that 
expresses heat transfer to the growing bubble is necess- 
ary to render the set of equations (10) and (11) com- 
pletely closed, as has been explained in detail in ref. 
[1 ]. Solution of the heat transfer problem usually leads 
to a relation between dR/dt and temperature differ- 
ences T~-T~ and T ~ -  T~ which closes the set of 
dynamic equations. 

When formulating a heat transfer equation, we 
must account for the fact that heat is transferred to 
the liquid-vapour interface not only from the bulk of 
superheated liquid, but also directly from the wall, 
through the liquid microlayer underneath the bubble 
[9, 10, 22]. For this reason, we need to consider flow 
and heat transfer within the microlayer. 

The Peclet number characterizing convective heat 
transport in the microlayer can be proven to be very 
small compared with unity. This means that con- 
vective transport can be neglected and only heat con- 
duction has to be taken into account. Since tem- 
perature variations in the direction normal to the wall 
greatly exceed those in the longitudinal direction due 
to the microlayer being extremely thin, the quasi- 

stationary temperature profile in the microlayer is 
expressible as 

T(z : t, r) ~ Tw - [z/h(t, r)] AT AT = Tw - T~ 

(12) 

where h(t, r) is microlayer thickness. 
Equation (12) completely determines the heat flux 

from the wall to the microlayer free surface, and 
consequently, the amount of liquid per unit area that 
is evaporated there in a unit time. As a result, liquid 
and vapour normal velocities at the surface are to be 
written out as follows : 

7 7 2AT p~ 
K = . (13) wl = ~ wv = ¢~ 7 =  plL Pl 

Thus, the problem of calculating vapour flux to the 
bubble through its lower boundary is reduced to the 
problem of determining microlayer thickness. 

With the exception of marginal regions which 
adjoin (l) the nucleation site where the bubble first 
originates and (2) the advancing or retreating bubble 
meniscus [regions I and I1 of Fig. 1 (b)], the microlayer 
is thin in the sense that liquid velocity varies in the 
lateral direction much faster than in the longitudinal 
radial direction. This means that governing fluid 
dynamic equations may be formulated as a familiar 
boundary layer approximation, the same approxi- 
mation which is generally used in studies of thin fluid 
films. Thus, 

~ W  r (q,W r CqWr c~2wr 1 @ 
- -  - ~ - W z ~  = V 
~t + "'~ ~r vz c~z 2 p~ ~?r 

(~(rw D O(rw~) 
0 p _ 0  - - +  =0 .  (14) 
c~z c~r & 

These equations assume that the liquid is incom- 
pressible. Pressure variations due to gravity which are 
irrelevant in a thin layer are also overlooked. 

Our actual realm of interest bears upon averaged 
microlayer characteristics: microlayer thickness and 
the mean radial velocity of the liquid within the micro- 
layer. It suggests that equation (14) be integrated 
over dz across the whole microlayer. By so doing, we 
are following a universal procedure recently applied to 
axisymmetric liquid films spreading over a flat surface 
[23]. Boundary conditions assumed while looking for 
solutions to equation (14) are of a standard form, 

0h 0h 7 
w r = w , = 0  z = 0 ,  w , = ~ + W r y r + / ~  

~ W  r 
~ - = 0  p = c o n s t ,  z = h ( t , r )  (15) 

where p is a uniform pressure along the microlayer 
free surface. This value is slightly different from the 
vapour pressure inside the bubble which is due to the 
momentum carried away by vapour molecules that 
are emitted by the surface, and to a small radial vari- 
ation of the surface curvature. The microlayer is sup- 
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posed not too thin for disjoining pressure to play a 
noticeable role. 

The conditions imposed at the boundary between 
the microlayer and the wall are the usual no-slip 
boundary conditions. The first of the above conditions 
at the free microlayer surface is the familiar kinematic 
condition with an allowance made for the vapor- 
ization of inflowing liquid. The second of the above 
conditions suggests the interface to be force-free. 
Among other things, the last condition implies that 
there are no significant temperature and surfactant 
concentration gradients along the interface. The third 
condition at z = h(t, r) corresponds to a neglect of 
surface tension effects at the almost flat interface as 
well as of inertial effects in the vapour that fills the 
bubble. 

The integration of equation (14) with allowance for 
requirements (15) yields 

1 a h 
~ t l f w r d z ÷ r o r ( r f o W 2 d Z ) ÷ h f ~ W r d z  

OWrl 
gz I~o 

oh I. ) 
O t + r t 3 r k  j0wrdz  + h = 0 .  (16) 

Thus, unknown variable wz is excluded at the expense 
of introducing another unknown variable : microlayer 
thickness h. 

It is natural to next make use of the well-known 
Karman-Polhausen method according to which the 
radial velocity component is expressed in the self- 
similar form, 

3{ 1 ~'~ z 
w~ = ~ / -  ~r/ )u  ~/= ~ (17) 

compatible with the remaining equations (15). Thus, 
variable w~ is also replaced by a new variable, the 
mean radial velocity u. 

After performing the integration in equation (16) 
with the help of profile (17), we arrive at a set of 
nonlinear equations, 

8~(hu)+~- ;  (rhu~)+ ~v+~, ~ = o  

Oh 51 O y 
c~t + g r Or (rhu)+ h = 0. (18) 

A comprehensive analysis of equations (18) would 
prove difficult to perform for two main reasons: (1) 
the strongly nonlinear nature of the equations and (2) 
uncertainties encountered when formulating a bound- 
ary condition at r = 0 because this boundary con- 
dition is dictated by unknown peculiarities of a par- 
ticular nucleation site. We shall avoid these difficulties 
by looking for a partial solution to equations (18) 
belonging to the following type : 

h(t,r) = ~(t)r ~ u(t, r) = [3(t)r m. (19) 

By substituting these relations into equation (18) 
we get n = 0, m = 1, and further, 

[3 = - 5ctkdt + , 

d ( d a  1632(da + ~)  2 

When solving the above ordinary differential equa- 
tion for ~, we dismiss as physically incongruous both 
irrelevant constant solutions and solutions that tend 
to a constant as t goes to infinity. Moreover, we 
require that a relevant solution be zero at t = 0 and 
that it remain finite at any instant, that is, we require 

< oo at t ~ oo. Then we obtain, as a final result, 

2 r H = [4200"xl/2 
h = H x / ( v j )  u = - ~ t ~2~0-7) ~ 1.294, 

58 
ve = v - 5 - ~ y  ~ v-0.11y.  (20) 

It is quite suggestive that only solution (20) that 
describes a microlayer of uniform thickness is deriv- 
able from among all other possible profiles prescribed 
by equations (19). This confirms to an extent the 
expectation that the microlayer is fiat everywhere 
except at the marginal region adjoining the nucleation 
site and at the moving fringe of the bubble meniscus. 
This solution is especially striking because mean vel- 
ocity u(t, r) is totally independent of liquid viscosity, 
despite the fact that flow inside the microlayer is essen- 
tially viscous. This indicates that the liquid being left 
behind as the bubble meniscus advances along the wall 
makes for a kinematic origin of the flow. However, the 
more viscous the liquid and the weaker the evap- 
oration, the larger the microlayer thickness. As unex- 
pected as it may seem, microlayer thickening is 
implicitly confirmed by the very fact that bubble vol- 
ume increases roughly proportional to the square root 
of time, at least in cases where vaporization at the free 
microlayer surface prevails in providing for bubble 
growth as compared with evaporation from the bulk. 

The rate with which microlayer thickness increases 
is proportional to an effective kinematic viscosity vo 
that decreases with y, so that there is a critical value 
of the evaporation rate corresponding to Ycr ~ 9.05 v. 
If  an actual y exceeds this threshold value, there is 
altogether no solution to equations (18) of the type 
specified in equation (19). This means that evap- 
oration will be strong enough to prevent the formation 
of a microlayer beneath the bubble from the very 
beginning of bubble development. This critical 
threshold value of y may justifiably be associated with 
the well-known burnout crisis, although a dry spot 
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near the nucleation site can make its appearance spon- 
taneously at evaporation rates corresponding to con- 
siderably smaller 7. 

One might think that equations (20) contradict 
experiments in which it was inferred that the liquid 
microlayer beneath the vapour bubble is almost 
wedge-shaped, with its thickness decreasing as the 
bubble grows [9 12]. Moreover, in these experiments, 
a dry spot around the nucleation site was detected 
that broadened with time, due to evaporation. But 
when we consider that equations (20) should be 
viewed as bearing upon averaged microlayer thickness 
and upon velocity outside of the marginal regions 
mentioned above, there is no real contradiction. 

Notwithstanding, we must be cautious when apply- 
ing the above results to a final stage of bubble evol- 
ution, that is, the stage in which the bubble base is 
likely to reduce. Admittedly, equations (20) should 
hold true for an early stage during which the advanc- 
ing bubble meniscus leaves behind some amount of 
liquid in the vicinity of the wall. However, it is doubt- 
ful whether these equations may be acceptable for the 
final stage when the meniscus retracts, because there 
is no apparent physical reason for liquid to flow into 
the microlayer from the outside. It seems much more 
probable that the liquid inflow ought to terminate at 
such a stage, so that the regime of microlayer thick- 
ening specific to the initial and intermediate periods 
of bubble growth is replaced by a regime of microlayer 
thinning. 

In addition, we have imposed no boundary con- 
ditions at the nucleation site. Admittedly, microlayer 
thickness at the nucleation site must turn to zero at 
the initial moment of bubble origination, and this fact 
has been entirely ignored when looking for solutions 
in the form of (19). Therefore, bubble thickness near 
the nucleation site must (1) be very small, so that 
molecular attraction forces that give rise to disjoining 
pressure become important and (2) vary with the rad- 
ial coordinate sufficiently fast to render the surface 
tension contribution to pressure within the microlayer 
significant as well. Both these reasons can easily be 
proven to make for the appearance and subsequent 
broadening of a dry spot around the nucleation site. 

The net gain of this section consists in the con- 
clusion that heat flux across the microlayer to a unit 
area of the lower bubble boundary equals 

qm = ).AT/h(t) (21) 

with h(t) identified by equation (20). 

6. THERMALLY CONTROLLED BUBBLES 

In the remainder of this paper, we apply the above- 
developed dynamic theory for vapour bubble growth 
and detachment to the simplest possible case where 
bubble growth is thermally controlled, and conse- 
quently, all inertial effects, however significant for 
motion of the bubble centre of mass, are entirely irrel- 

evant with respect to bubble expansion. For thermally 
controlled bubbles, the averaged heat flux density to 
the upper spherical part of the bubble surface from 
the bulk of the ambient superheated liquid can be 
formulated in a form similar to that of equation (21), 

qb ~ 2AT/I(t) l(t) = (2/(3x/(Xt) (22) 

where constant C appears in the classical parabolic 
law for bubble growth, which is formulated as 

R(t) = CJaw~()U). (23) 

A great many papers and textbooks contain review 
of the various values for C that can be obtained within 
the framework of differing models of bubble growth 
within a superheated liquid layer near the wall. Most 
of these values fall within the range of I 2. However, 
formula (23) may also be regarded as an empirical 
correlation which holds approximately true even for 
boiling of subcooled liquids. In this case, C must be 
regarded as an empirical constant which may have a 
value smaller than unity. 

When bubble growth is thermally controlled, 
dynamic equation (10) for bubble expansion is utterly 
irrelevant. The bubble growth equation can be for- 
mulated immediately as follows : 

dV ~27zR(R +s) ~z(RZ--ff-).~).AT. 

dt - L [(t) + h(t) Jp ,  L 

This equation relates the bubble growth rate to the 
rate of heat transfer divided by the vapour density 
inside the bubble. The first term in brackets is pro- 
portional to the heat flux to the spherical part of the 
bubble surface from the bulk of liquid in accordance 
with equation (22). The second term represents heat 
transfer to the lower bubble surface through the 
microlayer in accordance with equation (21). Taking 
into account the equations for l(t) and h(t), the 
bubble growth equation can be reformulated as 

R - s \  /)~\~2 

N°, = C H \  v ] CHPr ',2 (24) 

where parameter Nm stands for a new dimensionless 
criterion that specifies the relative importance of vapo- 
rization at the microlayer free surface. The larger Nn,, 
the more important the heat transfer contribution by 
heat conduction through the microlayer, and this is 
all the more true for almost hemispherical bubbles for 
which s ~ 0. 

Equations (11) and (24) constitute a closed set of 
equations used to solve for both R and z. As has 
already been indicated, a stumbling block to solving 
this set is met with the regrettable fact that equation 
(11) contains coefficients k(O), Kt(O) and Kv(0) which 
are approximately known only for those bubbles close 
in shape either to a sphere or to a hemisphere. 
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When the bubble is almost hemispherical, equations 
(11) and (24) reduce to 

~t=½CJa(l+Nm)(Z) '/: 

R(t) = CJa(l + Nm) ( x / ~ + c o n s t  (25) 

and 

~(R3dZ'~-rk(n/2)+K]-l{  L 2 

+ 6 R a + 6 ( 1  + x\~)R 21-LR~7 + 5\¥/d2R 3(dR~2]~jj (26) 

with k(n/2) being an unknown value describing the 
virtual mass coefficient for a growing hemisphere 
attached to a fiat surface. 

Three forces appear in the right-hand side of equa- 
tion (26) : buoyancy, an effective force due to surface 
tension, and a force resulting from inertia of the liquid 
displaced by the expanding hemisphere. The two for- 
mer forces are positive and accordingly favour the 
bubble centre rising above the wall, whereas the latter 
force can be shown to be negative with the aid of 
equation (25). This means that the force due to liquid 
inertia makes for flattening the bubble and tries to 
keep it near the wall. 

When the bubble is almost spherical, we arrive at 
the following equations, instead of equations (25) and 
(26), 

d R - ½ c J a [ l + (  2] R J\t] 

R ( t ) ~ C J a x / ~  at Nm~<l (27) 

and 

d /  3ds\  16 1 - n  
~ ( R  ~-~)= 11 l+ax R39 

12 R2--S 2 a 16 
- -  a =  (28)  

+ 11(1 +a~) R p~ H-" 

Variable s may be substituted for z in the last equa- 
tion which can, of course, also be made linear within 
the same limits of accuracy by setting 
R2--s 2 ~ 2R(R+s). The force due to inertia of the 
expanding liquid can be proven to be proportional to 
the small bubble base area, n(R 2 -  s2). Since this force 
is necessarily small, it may be overlooked in light of 
the large inertial force on the left-hand side of equa- 
tion (28). In this case, only buoyancy and surface 
tension remain to affect bubble evolution, and both 
of them assist the bubble in detaching from the wall. 
The force due to buoyancy is negligible as compared 
with force due to surface tension for sufficiently small 
bubbles. However, the former force increases and can 
eventually become dominant over the latter force as 
the bubble grows. 

We have already pointed out that a vapour bubble 
evolving at a nucleation site is likely to be close in 
shape to a hemisphere at some early stage of its devel- 
opment and to a sphere immediately before detach- 
ment. This suggests that a two-stage bubble growth 
model could possibly be put forward by analogy with 
a similar model for the formation of gaseous bubbles 
at a submerged plate orifice [24]. The first stage is 
assumed to correspond to the growth of an almost 
hemispherical vapour envelope that is pressed to the 
wall by the inertial force generated at its expanding 
external boundary. When the force balance is 
reversed, a second stage takes place in which buoyancy 
and surface tension forces prevail over the liquid iner- 
tial force. After a relatively short time elapses, the 
bubble may be approximately viewed as an equivalent 
sphere of the same volume (cf. the gas injection model 
in refs. [19, 24]). 

The duration t~ of the first stage can be found by 
equating the right-hand side of equation (26) to zero. 
This gives an algebraic equation, with allowance for 
the parabolic law (25), 

t3/2 + 6 tr/pa /11/2 
(1-x)[CJa(1 +Arm)] 2 gz 

3 (1 +x/5)CJa(1 + N m )  X ~/2 

4 1 - ~  g 

If buoyancy dominates or if the Jakob number is high, 
t~ is scaled with X1/3g -2/3 and is proportional to ga 2/3. 
For the opposite limiting case in which the surface 
tension force prevails or the Jakob number is low, t 1 
scales with ~3(o'/pl)-2 and is proportional to Ja 6. 

No matter whether buoyancy or surface tension 
dominates, t I can be shown to be small as compared 
with the whole period of bubble evolution up to the 
moment of detachment. The relative duration of the 
first development stage for vapour bubbles in nucleate 
boiling happens to be much smaller than that for 
gaseous bubbles formed as a result of gas injection 
through nozzles or orifices. (For gas-injected bubbles, 
the first stage amounts to up to twenty per cent of the 
entire bubble evolution process [24].) The difference 
between the duration of the second stage for gas- 
injected vs nucleate boiling bubbles is due to the fact 
that vapour bubble growth rate depends on bubble 
surface area. Bubble growth rate is relatively neg- 
ligible for vapour bubbles, provided they are 
sufficiently small, as compared with the growth rate 
of those gaseous bubbles into which gas usually flows 
with an almost invariable discharge. 

Since the first stage of bubble development is short, 
we are afforded an opportunity to altogether ignore 
the extent to which bubble shape deviates from that 
of a sphere at the first initial stage, and instead we 
approximately assume the bubble to be nearly spheri- 
cal, as is often assumed even when treating gaseous 
bubble formation [19]. 

Thus, with a mind to develop a comparatively sim- 
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ple model of bubble growth and detachment, we must 
now consider solutions to equations (27) and (28). 

7. BUBBLES WITH NEGLIGIBLE EVAPORATION 
FROM THE MICROLAYER 

If parameter Nm involved in equation (27) is not 
too large compared with unity (meaning in view of its 
definition in equation (24) that Pr is not too low), 
evaporation from the base of nearly spherical bubbles 
may be ignored. In this case, equation (27) yields the 
known parabolic law of bubble growth, and we have 
to deal with the only equation (28) that must be solved 
to find s. 

7.1. Bubbles dominated by buoyancy 
If buoyancy plays a major role in promoting the 

rise of bubble above the wall, it is natural to introduce 
time and length scales based on a comparison of the 
first term on the right-hand side of equation (28) and 
the inertial force on the left-hand side. Thus we choose 
to define 

t = t {b~ ' c  

(11 I+aK~2:'{CJav'z~ 2 ' 

L{")= 1 6 - I - - T ]  \ - -g  J 

s = L ( , b ) (  

11 1 +a~c) I 3 (CJav,,X)43 

0.883 

9 (('Ya) 2 ~X' 3 
0.77 . . . . .  "" ,(.]2 3 

(CJa) 4 'Z 2 
(29) 

where approximate equalities have relevance to the 
limiting case • ~ 0. 

Equations (27) and (28) then reduce to the fol- 
lowing dimensionless equations 

/(b} ~ = V.C r32 d~ r - ~  -~ 
- -  = " d r \  = + N ~  : 
- - s  x~' g 

(3O) 

in which a dimensionless criterion 

12 a/pl Lit b) 0.963 aipl 
No = l l ( 1  +aK) (CJa)2x L~ b~ (CJa) s3 x4~q ~ ' 

(31) 

characterizes the influence caused by surface tension 
force. 

We start by considering the simplest extreme case, 
when N~ is very small and therefore the second term 
on the right-hand side of equation (30) essentially 
drops out. The wanted solution to the equation at 

natural initial conditions, ( = d ( /&  = 0 at z = 0, is 
trivial. It reads ( =  r2/5. The moment  of bubble 
detachment is defined by requiring that s coincide with 
current bubble radius R, whence the dimensionless 
time of detachment rd = 523 ~ 2.924. The cor- 
responding dimensional time and bubble detachment 
radius are 

td -- L{~)~d ~ 2.924LI b/ ~ 2.278(CJa)23Zh3g 2~ 

Rd = L/,b)x/"t'd ~ 1.710L(~ b' ~ 1.570(CJa)4'3%2'3.q i 3 

(32) 

the last approximate equalities in each formulation 
being valid at the limit ~< -~ 0. 

A significant feature of equations (32) consists in 
that they show detachment characteristics to be essen- 
tially dependent on the thermophysical properties of 
the liquid. Conventional formulae for these detach- 
ment characteristics usually fail to incorporate such a 
dependence in principle, contrary to some exper- 
imental correlations which clearly witness its exis- 
tence. For instance, bubble departure diameter has 
been found in refs. [15, 16] to be proportional to 
Ja,~4, Ja ,  standing for a modified Jakob number  with 
AT substituted by T,. This agrees with equations (32) 
even quantitatively, because the difference between 
the theoretical and experimental exponents of 4/3 and 
5/4 is rather negligible and presumably lies within 
experimental error. The limiting regime considered 
above can conditionally be attributed to high gravity 
boiling. It is easy to see, however, that this regime is 
possible not only in normal or elevated gravity but 
also at an arbitrary, no matter how small, gravity level 
if the Jakob number  is large enough. The appearance 
of this extreme regime is also favoured by an increase 
in the thermal diffusivity of the liquid and a decrease 
in the surface tension coefficient at the liquid vapour 
interface. 

Consider, next, changes in ~(r), as well as in bubble 
detachment characteristics which are caused by vari- 
ations of parameter N,. For definitiveness, the vari- 
ations may be thought as being due to variations in 
under otherwise identical conditions. In order to come 
up with function ~(z;N,)  as a solution to equation 
(30), suitable initial conditions must be imposed. 
These conditions have to depend, of course, on the 
peculiarities of the nucleation site where the bubble 
evolves, but this poses a problem since little is gen- 
erally known about these peculiarities. Since we intend 
to avoid this difficulty and since we also wish to leave 
various problems of original vapour nucleus for- 
mation and incipient boiling completely out of the 
picture, initial conditions have to be posited with a 
hypothetical macroscopic bubble in mind, rather than 
a vapour nucleus. Admittedly, the initial bubble is 
large as compared with the nucleus, and it can be 
described with the help of asymptotics to solutions of 
equation (30) which are valid at short times. The 
desired asymptotic representation follows from the 
equation itself, 
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Fig. 2. Integral curves (a) and dimensionless bubble base 
area (b) for equation (30) at initial conditions stated at 
T = 1 0  - 4  in accordance with equation (33) and at different 
N~ (figures at the curves); the upper curve ~ = T j/2 in (a) 
presents dimensional bubble radius ; (c) illustrates the effect 
of initial conditions : curves 1-4 correspond to n = 0, 0.1, 0.3 

and 0.5 in condition ~r ~/2 = n, respectively, at N, = 0. 

Bubble base area time dependence is illustrated in 
Fig. 2(b) for the same conditions as in Fig. 2(a). At 
first, this area increases with time due to bubble expan- 
sion and to the resulting advance of the bubble men- 
iscus along the wall. After that, when the bubble centre 
rises sufficiently fast, the bubble base area begins to 
decrease in spite of the bubble continuing to grow, and 
it eventually vanishes just  at the moment  of bubble 
detachment. 

Equation (33) proves the initial small bubble to be 
almost hemispherical, which is quite compatible with 
the aforementioned concept of two-stage bubble 
growth. If the initial bubble deviates from a hemi- 
sphere for some chance reason, it quickly resumes 
hemispherical form, as evidenced by the curves in Fig. 
2(c). The curves show how ratio s/R changes with 
time at N~ -= 0 and at different initial conditions. Irres- 
pective of its initial value, ratio s /R rapidly falls off to 
nearly zero, and this corresponds to the state where 
the bubble is a hemisphere attached to the wall. There- 
upon ff begins to grow almost in accordance with the 
corresponding curve of Fig. 2(a). Apart  from other 
things, the fact that bubble evolution is insensitive to 
an exact form of initial conditions completely justifies 
using asymptotics (33) to state these initial conditions. 

7.2. Bubbles dominated by surface tension 
If surface tension force prevails in promoting bub- 

ble transformation into a full sphere, and therefore, 
dominates in providing its detachment, it is much 
more appropriate to introduce time and length scales 
different from those used to describe bubble motion 
when it is dominated by buoyancy. Such scales can be 
brought into action by taking into account the second 
term on the right-hand side of equation (28). Namely, 
we assume 

t = L~)r 

L[~> = [11(1 + ax) l :  ( CJax/~) 6 
L 12 J (a /p , )  = ~ 0 . 8 4 0 -  

(CJa)6z 3 

(a/pO 2 

~(~ ; N~) ~ (2N,/3)z,  z << N,. (33) 

The relevant solutions to equation (30) obtained in 
compliance with equation (33) are illustrated by the 
curves in Fig. 2. All of  the curves in Figs. 2(a) and (b) 
satisfy the initial conditions imposed at ~ = 10 4. The 
curves in Fig. 2(a) intersect curve ~ = "c 1/2, which rep- 
resents the dimensionless bubble radius, where they 
terminate. Corresponding values zd give the dimen- 
sionless bubble detachment time at different N,, which 
is a decreasing function of this parameter. 

Thus, total durat ion of bubble evolution up to the 
moment  of detachment shortens and bubble departure 
size diminishes as surface tension force increases at a 
fixed buoyancy. This is completely understandable 
from the physical point of view since surface tension 
force adds to the action of the force due to buoyancy 
and so speeds up bubble detachment. 

s = L T ~  

L~.) 11(1 + a x )  (CJa~/x) 4 (CJa)4x 2 
12 alp1 ~ 0.917 a/p~-~- 

(34) 

the approximate equalities again implying x << 1. 
Equations (27) and (28) now reduce to 

with a new dimensionless parameter 

(35) 

characterizing the relative role played by buoyancy. 

16 l - x  L[ ")2 ~ 1.120(CJa) 8 z ' g 3  (36) 
Nb 11 1 + ax L~ ~> g ~ (a/p~) 
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(figures at the curves) ; curve ~ = r t2 is not plotted. 

Since the scales identified in equation (34) are inde- 
pendent of  gravity acceleration, it is appropriate to 
apply equation (35) to the boiling of  a given liquid 
under preassigned thermal and pressure conditions, 
but in variable gravity, irrespective of  the ratio of  
surface tension force to buoyancy. 

The asymptotics to be employed while formulating 
initial conditions for solutions to equation (35) 
resemble those in equation (33) but are independent 
of  parameter Nb,  

~ ( r ; N b ) ~ ( 2 / 3 ) r  r<<Nh ~ (37) 

Integral curves for equation (35) that satisfy initial 
conditions (37) imposed at r = 10 4 are plotted in Fig. 
3(a), and corresponding curves for the dimensionless 
bubble base area are plotted in Fig. 3(b). Each of  the 
curves in Fig. 3(a), except for the one corresponding 
to Nb = 0, terminates at a point of  intersection with 
curve ~ = r ~-~. Coordinates of  the termination point 
again determine both the whole duration of  bubble 
evolution and the bubble departure radius. Both the 
duration of  bubble evolution and the departure radius 
are monotonously decreasing functions of  parameter 
Nb. They go to zero a s  N b tends to infinity and increase 
limitlessly as this parameter reaches zero. It is easy to 
see that adding some amount  of  buoyancy to the sur- 
face tension force quickens the process of  bubble 
development, in the same way, and precisely for the 
same reason, as adding surface tension to buoyancy 
does. It is worth noting that the curves in Figs. 2 
and 3 contain identical physical information which is 
presented in terms of  different variables. 

A striking feature o fvapour  bubble evolution domi- 
nated by surface tension force is the very strong depen- 
dence of  inherent time and length scales on physical 
properties of  the liquid. Equally striking is the strong 
dependence of  these scales on coefficient C which 
characterizes bubble growth and on wall temperature, 
as shown in equation (34). Hence, it is quite natural 
to anticipate that a seemingly insignificant variation 
of  AT, when all other conditions are held equal, will 
considerably affect the main characteristics of  bubble 
growth and detachment. This may easily be the reason 
for the embarrassing scatter of  results in experiments 
carried out under apparently identical conditions, 
with obvious implications for evaluating and cor- 
relating experimental data. It also proves that the heat 
conductivity of  the wall material, which is capable of  
affecting the local wall temperature underneath the 
bubble to quite a considerable degree, is of  paramount  
significance in establishing an actual regime of  bubble 
evolution, and consequently, of  nucleate pool boiling. 

If buoyancy completely disappears (No = 0), as 
happens in complete weightlessness, only surface ten- 
sion remains to provide for transformation of  the 
bubble into a sphere. It can be readily proven, 
however, that surface tension force alone is insufficient 
to ensure bubble detachment. This is due to the surface 
tension force becoming progressively weaker as bub- 
ble size increases at a constant bubble base, or as the 
base shrinks at a fixed bubble volume. For  this reason, 
when on the verge of  detachment, the bubble base 
retraction that accompanies the rise of  the bubble 
centre due to surface tension force cannot ultimately 
overcome the bubble base broadening that results 
from advance of  the bubble meniscus along the wall 
that is due to bubble growth. As a consequence, the 
bubble centre continues to rise in such a way that its 
vertical coordinate never reaches the current bubble 
radius, and the required necessary condition of  bubble 
detachment is never achieved. 

This means, first of  all, that the corresponding curve 
~(r) [the curve marked by zero in Fig. 3(a)] lies below 
curve ~ = r ~2 for all time values, and the bubble base 
area monotonously increases with time to infinity, 
with ratio siR tending to a constant limit, as is shown 
in Fig. 4. This notwithstanding, adding some amount  
of  buoyancy, if  apparently quite negligible, results in 
a drastic change of  bubble behaviour. No matter how 
low gravity may be, there inevitably comes a moment  
at which the bubble base area ceases to increase and 
henceforth begins to fall off to zero, as illustrated in 
Fig. 4. This is because buoyancy is proport ional  not 
only to gravity acceleration but also the bubble 
volume. As the bubble grows, buoyancy in due course 
becomes strong enough to make the bubble detach 
itself at an arbitrarily small but finite gravity accel- 
eration, Because of  the complicated dependence of  
the surface tension force on the size and geometrical 
characteristics of  the bubble attached to the wall, base 
area time dependence displays two maxima and a 
minimum during the intermediate stage of  bubble 
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Fig. 4. Time dependence for bubble base area in low gravity ; 
figures at the curves give Nb. 

evolution in sufficiently low gravity, as shown in Fig. 
4(b). The duration of the whole evolutionary process 
up to detachment rapidly increases as Nb diminishes 
within a region of its small values. It should be stressed 
that the same behaviour is expected with regard to 
vapour bubbles developing in moderately reduced 
gravity, and even in normal gravity whenever par- 
ameter Nb identified by equation (36) happens to be 
small for any other reason (for example, an essential 
diminution of this parameter can be rendered by a 
comparatively small decrease in wall overheat AT). 

7.3. Influence of gravity on bubble detachment charac- 
teristics 

In order to compare theoretical expectations with 
experimental evidence, we shall consider the influence 
caused by gravity on bubble evolution duration and 
on bubble detachment radius. A ratio relating the 
whole time of bubble evolution at a few levels of 
reduced gravity to the analogous time in Earth grav- 
ity, and also a similar ratio for the bubble departure 
diameter, have been determined in some experiments 
that were conducted on the boiling of saturated water 
under normal pressure conditions [2, 3]. These ratios 
are illustrated by dots in Fig. 5. In this figure, the data 
on evolution time and on departure diameter have 
been taken from the curves in Figs. 16 and 19 of 
ref. [3], respectively. In view of equation (32), the 
theoretical evaluation results in formulae 

Rd (Zd~ 1/2 g ~= % Ni 2/3 i i  1/3 N~=-- 
zdo R~--~ = -\zd~/ ge 

(38) 
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Fig. 5. Relative duration of the whole period of bubble evol- 
ution (a) and relative bubble radius at detachment (b) in 
reduced gravity ; 1-3--theoretical curves at Nb = oo (or 0), 
l0 and 5 x l0 -4, respectively, dots---experimental data in 

refs. [2, 3]. 

where Zd and Tde are understood as functions of par- 
ameter N, at corresponding gravity. 

It follows at once that in the limiting case of very 
high gravity, that is, when N, ~ 0 and when both 
aforementioned dimensionless time values approxi- 
mately equal 2.924, t d and Rd will increase with gravity 
reduction. These quantities are really proportional to 
9 -2/3 and g-1/3 (but not to  g-1/2 as suggested in ref. 
[3]), respectively. These power laws are illustrated in 
Fig. 5 by the curves marked with 1. 

A simple evaluation suffices to show that bubble 
dynamics are governed, given conditions described in 
the experiments conducted in refs. [2, 3], by surface 
tension force, rather than by buoyancy. Because of 
this, we prefer to make use of the variables identified 
in equation (34). Since the scales in equation (34) 
do not involve gravity acceleration, the ratios under 
question have to be reformulated as 

td Zd gd (Zd ~ z:2 -- - -  (39) 

with ZO and Zde now being understood as functions of 
parameter Nb as specified in equation (36). 

As Nb~ decreases from infinity, the theoretical curves 
in Fig. 5 decline and reach their lowest point at 
approximately Nb~ ,~ l0 (curves 2 in Fig. 5). There- 
upon the curves begin to ascend as Nb~ continues to 
fall below 10. They come to the position marked 3 at 
Nbe = 5 x l0 -3. However, when N~ continues on to 
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zero, the curves in Fig. 5 again tend to the curves 
marked with 1. 

Allowing for some uncertainties in experimental 
conditions that may be inherent in refs. [2, 3], we can 
deduce from these experimental conditions that the 
relevant value of Nhe lies somewhere between l0 4 and 
l0 ~, so that the curves 3 in Fig. 5 may be looked 
upon as approximate theoretical evaluations of the 
quantities identified in equation (39). The agreement 
between experimental and theoretical results in Fig. 5 
is good. 

8. EFFECT OF EVAPORATION FROM THE 
MICROLAYER 

Within the framework of the simplified model pre- 
sented thus far, bubble radius changes with time in 
accordance with the parabolic law in equation (30) or 
(35), irrespective of an actual ratio of buoyancy to 
surface tension force. Consequently, the coefficient in 
this law appears to be independent of both gravity 
and surface tension. This seeming independence is 
a direct result of neglecting vaporization at the free 
microlayer surface when deriving the growth law. 

The total amount of vapour emerging from the free 
microlayer surface is proportional to the area of this 
surface. Since surface area depends on bubble centre 
motion as it is conditioned by the action of all relevant 
forces, factors determining these forces must influence 
the area, and hence, bubble growth rate as well. Thus 
one may foresee that allowance for evaporation from 
the microlayer will result in a slight dependence of the 
growth rate on all the parameters specifying these 
forces. In order to investigate such relatively subtle 
effects, we need to first of all turn from the parabolic 
law to original equation (27) that describes thermally 
controlled bubble growth. 

By using the scales identified in equation (34) when 
dealing with equations (27) and (28), we arrive at a 
set of two nonlinear dimensionless equations, 

dz 'r 1+ N,,,-I~£'-~ 

instead of equations (35). initial conditions are now 
to be stated with the help of asymptotics 

~(Nm+0.5)x/r ~ (2 /3 ) (Nm+0 .5 )  ~r T < < N h  I 

(41) 

which substitute for those in equation (37). 
Typical solutions of problem (40), (41) are pre- 

sented in Fig. 6. As Nm increases over 1/2 at a fixed 
Nb, the process of bubble development becomes more 
and more lengthy, with a corresponding enlargement 
of bubble volume at detachment [Fig. 6(a)]. This is 
indicative of a general effect on bubble development 
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Fig. 6. Influence of evaporation from microlayer on bubble 
dynamics at Nm = 0.5 (curves marked with 1) and N,,, = 1.5, 

2.5 (curves 2 and 3 in a) and N,, = 0 (curve 2 in b). 

duration that may be the result of an augmentation 
in bubble growth rate. Actually, since the bubble base 
expands along the wall as the bubble grows without 
changing its shape, the bubble centre has to move 
upwards for a larger distance in order to make the 
bubble area go to zero. Further, the lower the Prandtl 
number, the larger the parameter Nm. Thus, the gen- 
eral effect of evaporation from the microlayer on bub- 
ble development duration is especially pronounced in 
the boiling of liquid metals. It is worthwhile to as well 
note that Nm grows as C decreases, which condition is 
specific to the boiling of subcooled liquids. We must 
be careful, however, when drawing conclusions about 
the boiling of subcooled liquids because parameter C 
also bears upon the definition of relevant scales speci- 
fied in equation (29). IfNm is smaller than 1/2, as may 
be characteristic for liquids with Pr ~> 1 at C/> l, then 
bubble growth rate is insignificantly affected by the 
corrective term on the right-hand side of the first equa- 
tion (40) (this corrective term is due both to evap- 
oration from the microlayer and to the change in 
evaporation from the bulk of the surrounding liquid ; 
this change in evaporation from the bulk is caused by 
the fact that bubble shape deviates from that of a 
sphere). This is evidenced by Fig. 6(b). 

As already demonstrated, if evaporation from the 
microlayer is taken into account in the dynamic equa- 
tion describing bubble growth, it is natural to expect 
that bubble growth rate is dependent on parameters 
that determine the forces acting on the bubble. Such 
an expectation is fully confirmed by curves in Fig. 7. 
The curves show, first of all, that the actual growth 
law differs from the parabolic law. In the second place, 
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the growth rate is higher, the smaller the parameter 
Nb, or the lower the gravity, as long as surface tension 
is kept invariable. A similar conclusion can be dem- 
onstrated true when the gravity level is fixed : growth 
rate increases when surface tension force is dimin- 
ished. In both these cases, increased growth rate is 
attributable to the fact that a decrease in the total 
force favouring bubble departure from the wall slows 
down the transformation of the bubble into a full 
sphere, and thereby, results in a certain relative 
enlargement of the bubble base area at any given 
particular moment. The increase in the bubble base 
area enables an additional amount of vapour at the 
lower bubble surface to be produced, and conse- 
quently, causes the bubble growth rate to increase. 

On the contrary, when Nm-1/2  is negative, and 
there is a reduction of gravity at an invariable surface 
tension or vice versa, there is a decrease in growth rate 
due to the bubble not reaching a fully spherical shape. 
In this case, increased vaporization from the micro- 
layer does not compensate for a corresponding 
reduction of vaporization from the bulk. A reduced 
vaporization from the bulk results from a decrease in 
the area of the upper spherical part of the bubble 
surface as compared with the overall surface area of a 
sphere with the same volume. However, such a growth 
rate decrease in negligible, and does not deserve our 
further attention. 

By way of example, Fig. 8 shows a theoretical curve 
that follows from equations (40) and (41) in a sim- 
plified case where (l)  evaporation from the bulk is 
entirely neglected as compared with evaporation from 
the microlayer and (2) surface tension force is neg- 
lected as compared with buoyancy. This curve 
describes bubble growth from a hemispherical cavity 
with G0 -- 0.01 and ~0 = (d~/dz)0 = 0 at z0 = 0.01. This 
curve proves the parabolic law to hold approximately 
true for a lengthy intermediate stage of bubble growth, 
and this stage constitutes the main portion of the 
whole growth period. However, bubble size increases 
in a short initial stage faster than required by that law. 
Moreover, the parabolic law does not hold strictly 
true for the final finite stage of bubble growth where 
bubble growth supposedly slows down due to a pro- 
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gressive decrease in the evaporation surface immedi- 
ately before detachment. 

It is rather telling that the curves in Fig. 7 strikingly 
resemble the experimental curves obtained in refs. [2, 
3]. The cited papers have also demonstrated that bub- 
ble radius grows faster in an initial period than this is 
required by the parabolic law, with the time exponent 
ranging from 0.5 to 0.8 for particular bubbles. At the 
same time, these papers show that the radius grows 
slower than required by the parabolic law in a certain 
final stage of growth where the time exponent was 
found to be approximately 3/8. These power laws are 
illustrated in terms of logarithmic variables in Fig. 8, 
together with the parabolic law characteristic of the 
most prolonged intermediate stage of growth. 

9. CONCLUDING REMARKS 

The main achievement of the present work consists 
in our having succeeded in rigorously deriving 
expressions for the forces that condition vapour bub- 
ble formation at nucleation sites located on a super- 
heated wall under nucleate pool boiling conditions. 
Our model leads to the essentially important and novel 
conclusion that surface tension effects bring about an 
effective force that facilitates bubble detachment, but 
that this force by no means keeps the bubble pressed 
to the wall, as was postulated without sufficient foun- 
dation in practically all preceding theoretical papers 
on this subject. It can be readily proven that this 
conclusion regarding the capacity of the surface ten- 
sion force to facilitate bubble detachment is by no 
means abetted by the assumptions that have been 
made in this paper in order to simplify calculations. 
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It is jus t  this conclusion that  calls into question 
other  theoretical  papers  on vapour  bubble  growth and 
de tachment  publ ished to date, and that  enables us to 
ant icipate tha t  the present paper  should have a great 
impact  on future studies of  vapour  bubble  dynamics 
and  of  boiling heat  t ransfer  in general. 

In particular,  this conclusion helps us to unders tand  
two so far unexplained p h e n o m e n a :  (1) the com- 
plicated character  of  the dependence of  bubble  detach- 
ment  characterist ics not  only on factors that  deter- 
mine forces acting on the bubble,  but  also on physical 
properties of  the liquid and  its vapour ,  and also (2) 
the very fact of  the dependence of  the bubble  growth 
rate on the aforement ioned force factors. For tunate ly  
enough,  the latter dependence is ra ther  slight, and  the 
convent ional  formulae for bubble  growth rate may be 
used wi thout  inducing an appreciable error. However,  
the convent ional  formulae for bubble  de tachment  
characterist ics which are founded on the substantial ly 
incorrect  premise tha t  surface tension force impedes 
bubble  de tachment  are intrinsically flawed, and for 
this reason, must  be revised. 

In conclusion, we wish to point  out  tha t  the lack 
of  space has prevented us from listing a great many 
numerical  calculat ion results tha t  were actually per- 
formed over a wide range of  relevant parameters .  On 
the whole, research opportuni t ies  afforded by our  
novel formulat ion of  dynamic  equat ions for vapour  
bubbles  are by no means exhausted by the contents  of  
the present paper. 
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